Least-Squares Solutions of Multi-Valued Linear Operator Equations in Hilbert Spaces

Sung J. Lee
Department of Mathematics, University of South Florida, Tampa, Florida 33620, U.S.A.
AND
M. Zuhair Nashed
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19711, U.S.A.
Communicated by E. W. Cheney
Received August 13, 1982

Abstract

Let M be a linear manifold in $H_{1} \oplus H_{2}$, where H_{1} and H_{2} are Hilbert spaces. Two notions of least-squares solutions for the multi-valued linear operator equation (inclusion) $y \in M(x)$ are introduced and investigated. The main results include (i) equivalent conditions for least-squares solvability, (ii) properties of a least-squares solution, (iii) characterizations of the set of all least-squares solutions in terms of algebraic operator parts and generalized inverses of linear manifolds, and (iv) best approximation properties of generalized inverses and operator parts of multi-valued linear operators. The principal tools in this investigation are an abstract adjoint theory, orthogonal operator parts, and orthogonal generalized inverses of linear manifolds in Hilbert spaces.

1. Introduction

Let M be a linear manifold in $H_{1} \oplus H_{2}$, where H_{1} and H_{2} are Hilbert spaces. We view M as a multi-valued linear operator (or as a linear relation) by taking $M(x):=\{y \mid\{x, y\} \in M\}$. The domain, range, and null space of M are defined, respectively, by

$$
\begin{aligned}
& \text { Dom } M:=\left\{x \in H_{1} \mid\{x, y\} \in M \text { for some } y \in H_{2}\right\}, \\
& \text { Range } M:=\left\{y \in H_{2} \mid\{x, y\} \in M \text { for some } x \in H_{1}\right\}, \\
& \text { Null } M:=\left\{x \in H_{1} \mid\{x, 0\} \in M\right\} . \\
& 380
\end{aligned}
$$

In this paper, we introduce and investigate two notions of least-squares solutions (LSS) for the multi-valued linear operator equation (or inclusion)

$$
y \in M(x)
$$

where $y \in H_{2}$ is given. If $M(0)=\{0\}$, then M is (the graph of) a singlevalued linear operator from H_{1} to H_{2}. We are primarily interested in the situation when this is not the case. We shall refer to a "single-valued linear operator" simply as an "operator."

The main results which are developed in Section 3 include (i) equivalent conditions for least-squares solvability, (ii) characterizations of the set of all least-squares solutions in terms of algebraic operator parts and generalized inverses of multi-valued linear operators, (iii) properties of a least-squares solution, and (iv) best approximation properties of generalized inverses and operator parts for multi-valued mappings. The crucial tools in this development are an abstract adjoint theory (or adjoint subspaces), orthogonal operator parts and orthogonal generalized inverses of linear manifolds in Hilbert spaces. The essential aspects of these tools that are needed in the proofs are delineated in Section 2.

Throughout this paper, H_{1}, H_{2}, and H_{3} denote Hilbert spaces. The inner product in any of these spaces is denoted by \langle,$\rangle and the induced norm by$ $\|\cdot\|$. The following are standard notations (see $[1]$), but for convenience we define them. For any sets $A, B \subset H_{1} \oplus H_{2}$ and $Y \subset H_{3} \oplus H_{1}$,

$$
\begin{aligned}
A Y & :=\left\{\{x, y\} \in H_{3} \oplus H_{2} \mid\{x, z\} \in Y,\{z, y\} \in A\right\}, \\
\alpha A & :=\{\{x, \alpha y\} \mid\{x, y\} \in A\}, \quad \alpha \in \mathbb{C}, \\
A+B & :=\{a+b \mid a \in A, b \in B\}, \\
A+B & :=\{\{x, y+z\} \mid\{x, y\} \in A,\{x, z\} \in B\} .
\end{aligned}
$$

The adjoint (subspace) of $A \subset H_{1} \oplus H_{2}$ is defined by

$$
A^{*}:=\left\{\{y,-x\} \in H_{2} \oplus H_{1} \mid\{x, y\} \in A^{\perp}\right\}
$$

where A^{\perp} denotes the orthogonal complement of A. Useful properties of adjoints of linear manifolds are:

$$
\begin{aligned}
& A^{* *}=A^{c}, \quad \text { where } \quad A^{c} \text { denotes the closure of } A, \\
&(\lambda A)^{*}=\bar{\lambda} A^{*} \quad \text { for } \quad \lambda \in \mathbb{C}, \\
&(A B)^{*} \supset B^{*} A^{*}, \quad(A+B)^{*} \supset A^{*}+B^{*} .
\end{aligned}
$$

2. Operator Parts of Subspaces

Let M be a vector space in $H_{1} \oplus H_{2}$, the (external) direct sum of two Hilbert spaces H_{1}, H_{2}. A vector space $R \subset H_{1} \oplus H_{2}$ is called an algebraic operator part of M if R is the graph of a linear operator such that M is the (internal) algebraic direct sum of R and $\{0\} \oplus M(0)$. If an algebraic operator part is also (topologically) closed in $H_{1} \oplus H_{2}$, then it is called an operator part. These concepts were introduced by E. A. Coddington, and have been extensively studied in $[1,3]$. (Recall that a vector space V is said to be the internal direct sum of subspaces S_{1} and S_{2} of V if every element $v \in V$ can be uniquely written as $v=v_{1}+v_{2}$, where $v_{1} \in S_{1}$ and $v_{2} \in S_{2}$. In contrast, if V_{1} and V_{2} are given vector spaces, then the vector space V of all ordered pairs $\left(v_{1}, v_{2}\right)$, where $v_{i} \in V_{i}$, with the standard algebraic operations, is called the external direct sum of V_{1} and V_{2}. It is well known that if V is the internal direct sum of S_{1} and S_{2}, then V is isomorphic to the external direct sum of S_{1} and S_{2}. From now on we shall drop the adjectives "external" and "internal" for direct sums.)

We next introduce a notation S_{M}. Suppose that $M(0)$ is closed in H_{2} and let \mathscr{P} denote the orthogonal projector from H_{2} onto $M(0)$. Then we define

$$
\begin{aligned}
S_{M} & :=|\operatorname{graph}(I-\mathscr{P})| M \\
& =\{\{g,(I-\mathscr{P})(y)\} \mid\{g, y\} \in M\} .
\end{aligned}
$$

It is easy to check that S_{M} is an algebraic operator part of M such that S_{M} is orthogonal to $\{0\} \oplus M(0)$, and $\quad \operatorname{Dom} S_{M}=\operatorname{Dom} M, \quad$ Range $S_{M}=$ (Range $M) \cap(M(0))^{\perp}$. Moreover, S_{M} is closed if and only if M is closed. We emphasize here that throughout this paper, the notation S_{M} is reserved for the above algebraic operator part of M only when $M(0)$ is closed. It is clear from the definition that $S_{\lambda M}=\lambda S_{M}$ for any $\lambda \in \mathbb{C}$.

Proposition 2.1. (1) Let A, B be vector spaces in $H_{1} \oplus H_{2}$, such that $A(0), B(0)$ are closed. Then: (i) $(A+B)(0)=A(0)+B(0)+\operatorname{Range}\left(S_{A}-S_{B}\right)$. (ii) If $(A+B)(0)$ is closed, then

$$
\begin{aligned}
& S_{A+B}=\left\{\left\{g,(I-\mathscr{O})\left(S_{A}(a)+S_{B}(g-a)\right)\right\} \mid g \in \operatorname{Dom} A+\operatorname{Dom} B\right. \\
& \quad \text { and } a \in \operatorname{Dom} A \text { such that } g-a \in \operatorname{Dom} B\},
\end{aligned}
$$

where. \mathscr{P} is the orthogonal projector from H_{2} onto $(A \dot{+} B)(0)$. (iii) If $A(0)+B(0)$ is closed, then

$$
S_{A+B}=(\operatorname{graph}(I-Z))\left(S_{A}+S_{B}\right),
$$

where 2 is the orthogonal projector from H_{2} onto $(A+B)(0)=A(0)+B(0)$.
(2) Suppose that $A \subset H_{2} \oplus H_{3}$ and $B \subset H_{1} \oplus H_{2}$ are vector spaces such that $A(0), B(0)$ are closed. Then: (i) $(A B)(0)=A(0)+S_{A}(B(0) \cap$ $\operatorname{Dom} A$), orthogonal sum. (ii) If $(A B)(0)$ is closed, then

$$
\begin{aligned}
S_{A B}= & \left\{\left\{g,(I-\mathscr{Q}) S_{A}\left(S_{B}(g)+k\right\} \mid k \in B(0) \text { and } g \in \operatorname{Dom} B\right.\right. \\
& \text { such that } \left.S_{B}(g)+k \in \operatorname{Dom} A\right\}, \text { where } \mathcal{Q} \text { is the } \\
& \text { orthogonal projector from } H_{3} \text { onto }(A B)(0) .
\end{aligned}
$$

Proof. Take $x \in(A \dot{+} B)(0)$. Then $x=a_{2}+b_{2}$ for some a_{1} such that $\left\{a_{1}, a_{2}\right\} \in A,\left\{-a_{1}, b_{2}\right\} \in B$. Since S_{A} and S_{B} are algebraic operator parts of A and B, respectively, it follows that $a_{2}=S_{A}\left(a_{1}\right)+k_{1}, b_{2}=-S_{B}\left(a_{1}\right)+k_{2}$ for some $k_{1} \in A(0), k_{2} \in B(0)$. Thus

$$
x=S_{A}\left(a_{1}\right)-S_{B}\left(a_{1}\right)+k_{1}+k_{2} \in A(0)+B(0)+\operatorname{Range}\left(S_{A}-S_{B}\right)
$$

Hence

$$
(A \dot{+} B)(0) \subset A(0)+B(0)+\dot{\operatorname{Range}}\left(S_{A}-S_{B}\right)
$$

It is easy to check that

$$
(A+B)(0) \supset A(0)+B(0)+\operatorname{Range}\left(S_{A}-S_{B}\right)
$$

This proves (1-i). To prove (ii) of (1), let \mathscr{P} be as in the theorem. Then

$$
\begin{equation*}
S_{A+B}=\{\{g,(I-\mathscr{P})(h)\} \mid\{g, h\} \in A+B\} \tag{*}
\end{equation*}
$$

Now $\{g, h\} \in A+B$ if and only if

$$
g \in \operatorname{Dom} A+\operatorname{Dom} B, \quad h=S_{A}\left(a_{1}\right)+S_{B}\left(b_{1}\right)+k_{1}+k_{2}
$$

for some $k_{1} \in A(0), \quad k_{2} \in B(0), \quad a_{1} \in \operatorname{Dom} A, \quad b_{1} \in \operatorname{Dom} B$ such that $a_{1}+b_{1}=g$. Since $A(0)+B(0) \subset(A+B)(0),(I-\mathscr{P})\left(k_{1}+k_{2}\right)=0$. Thus $(*)$ combined with the above argument proves (ii) of (1). We now prove (iii) of (1). Let 2 be as in the theorem. Then

$$
\begin{equation*}
S_{A+B}=\{\{g,(I-\mathcal{Z})(h)\} \mid\{g, h\} \in A+B\} . \tag{**}
\end{equation*}
$$

Take $\{g, h\} \in A+B$. Then $g \in \operatorname{Dom} A \cap \operatorname{Dom} B$ and $h=p+q$ for some p, q such that $\{g, p\} \in A,\{g, q\} \in B$. Let

$$
p=S_{A}(g)+k_{1}, \quad q=S_{B}(g)+k_{2}
$$

for some $k_{1} \in A(0), k_{2} \in B(0)$. Then

$$
(I-\mathcal{Z})(h)=(I-\mathcal{Z})\left(S_{A}+S_{B}\right)(g)
$$

as $k_{1}+k_{2} \in(A+B)(0)$. This together with (**) yields (iii) of (1). Part (2) can be proved in a similar way.

Definition. Let $M \subset H_{1} \oplus H_{2}$ be a vector space such that Null M is closed. Let \mathscr{P} be the orthogonal projector from H_{1} onto Null M, and \mathscr{P}^{+}the orthogonal projector from H_{2} onto Null M^{*}. Let M^{-1} be the inverse relation of M. Define a vector space $M^{\#}$ by

$$
M^{\#}:=\left[\operatorname{graph}(I-\mathscr{P})\left|M^{-1}\right| \operatorname{graph}\left(I-\mathscr{P}^{+}\right)\right] .
$$

Then M^{*} is called the orthogonal generalized inverse of M. (If M is the graph of a closed densely defined linear operator, then $M^{\#}$ is precisely the graph of the Moore-Penrose inverse of that operator.)

The study of generalized inverses of multi-valued linear operators in Banach space was initiated by the authors in [3], where a comprehensive theory is developed with applications to differential subspaces and general boundary-value problems. In this paper, we will only need elementary properties of the orthogonal generalized inverse. It is proved in $\left[3 \mid\right.$ that $M^{\#}$ is a linear operator such that

$$
\begin{gathered}
M^{\#}=S_{M-1}+\left(\operatorname{Null} M^{*} \oplus\{0\}\right), \quad \text { direct sum } \\
\text { Dom } M^{\#}=\text { Range } M+\text { Null } M^{*} \\
\text { Range } M^{\#}=\operatorname{Range} S_{M_{-1}}=(\operatorname{Dom} M) \cap(\text { Null } M)^{\perp}
\end{gathered}
$$

Moreover, if M is closed, then M^{*} is closed and $\left(M^{*}\right)^{*}$ is the orthogonal generalized inverse of M^{*}. Furthermore, when M is closed, M^{*} is continuous if and only if Range M is closed.

Proposition 2.2. Let $M \subset H_{1} \oplus H_{2}$ be a vector space such that Null M is closed. Let $\mathscr{P}^{\text {and }} \mathscr{P}^{+}$be the orthogonal projectors from H_{1} and H_{2} onto Null M and Null M^{*}, respectively. Then

$$
\begin{aligned}
& M M^{\#}=\left\{\left\{x,\left(I-\mathscr{P}^{+}\right)(x)+s\right\} \mid s \in M(0), x \in \operatorname{Dom} M^{\#}\right\}, \\
& M^{\#} M=\{\{x,(I-\mathscr{P})(x)\} \mid x \in \operatorname{Dom} M\} .
\end{aligned}
$$

Proof. This can be found in [3].
The preceding properties of generalized inverses of multi-valued linear operators should be contrasted with those in the case of an operator; see [5]. In particular, it should be noted from Proposition 2.2 that in the case when $M(0) \neq\{0\}, M M^{*}$ is not a single-valued orthogonal projector.

3. Least-Squares Solutions of Multi-Valued Linear Operator Equations

Definition. Let $M \subset H_{1} \oplus H_{2}$ be an arbitrary given vector space. Let $y \in H_{2}$. Then $u \in H_{1}$ is called a least-squares solution (LSS) of the inclusion $y \in M(x)$ if $u \in \operatorname{Dom} M$ and

$$
d(y, \text { Range } M)=\|y-z\|
$$

for some $z \in M(u)$, where $d(y$, Range $M)$ is the distance between y and Range M.

Note that if such a z exists, then it is unique. Of course, u need not be unique. Also, if M is an operator, then the above definition coincides with the usual definition of a least-squares solution of an operator equation.

Proposition 3.1. [I] Let $y \in H_{2}$. Then the following statements are equivalent:
(i) $y \in M(x)$ has a LSS.
(ii) $\left(I-\mathscr{P}^{+}\right)(y) \in$ Range M, where \mathscr{P}^{+}is the orthogonal projector from H_{2} onto Null M^{*}.
(iii) $y \in \operatorname{Null} M^{*}+\operatorname{Range} M$.
[II] Let $y \in H_{1}$. Then the following statements are equivalent:
(i) $y \in M^{*}(x)$ has a LSS.
(ii) $(I-\mathscr{P})(y) \in \operatorname{Range} M^{*}$, where \mathscr{P} is the orthogonal projector from H_{1} onto Null M^{c}.
(iii) $y \in \operatorname{Null} M^{c}+\operatorname{Range} M^{*}$.

Proof. [I] Assume (i). Let u be a LSS of $y \in M(x)$. Then $u \in \operatorname{Dom} M$ and $\quad d(y$, Range $M)=\|y-z\|, \quad z \in M(u)$. Now $d(y$, Range $M)=$ $d\left(y,(\text { Range } M)^{c}\right)=\left\|y-\left(I-\mathscr{P}^{+}\right)(y)\right\|$. It follows from the best approximation property of an orthogonal projection in Hilbert space that $z:=$ $\left(I-\mathscr{P}^{+}\right) y \in M(u)$. Thus, (i) implies (ii). Now assume (ii). Then $\left(I-\mathscr{P}^{+}\right) y=z$ for some $z \in \operatorname{Range} M$. Thus, $y=\mathscr{P}^{+}(y)+z \in \operatorname{Null} M^{*} \dot{+}$ Range M, and so (ii) implies (iii). To prove that (iii) implies (i), let $y=k+z, \quad z \in M(u) \quad$ for \quad some $\quad u \in \operatorname{Dom} M, \quad k \in \operatorname{Null} M^{*}$. Then $d(y$, Range $M)=\left\|\mathscr{P}^{+}(y)\right\|=\left\|\mathscr{P}^{+}(k)\right\|=\|k\|=\|y-z\|$. Thus u is a LSS. This completes the proof of [I]. Part [II] is the dual of [I]; it follows from it by replacing M by M^{*} and by noting that $M^{* *}=M^{c}$.

Remark. Note that Null $M^{*}+$ Range M is always dense in H_{2}. It is closed if and only if Range M is closed.

Proposition 3.2. Let \mathscr{P} and \mathscr{P}^{+}be as in Proposition 3.1.
[I] Let $y \in H_{2}$ be given. Then the following statements are equivalent:
(i) $u \in H_{1}$ is a LSS of $y \in M(x)$.
(ii) $u \in \operatorname{Dom} M$ and $\left(I-\mathscr{P}^{+}\right)(y) \in M(u)$.
(iii) $u \in \operatorname{Dom} M$ and $y \in M(u)+\operatorname{Null} M^{*}$.
(iv) $u \in \operatorname{Dom} M$ and $M(u) \subset y \dot{+}(\text { Range } M)^{\perp}$.
[II] Let $y \in H_{1}$ be given. Then the following statements are equivalent:
(i) $u \in H_{2}$ and u is a LSS of $y \in M^{*}(x)$.
(ii) $u \in \operatorname{Dom} M^{*}$ and $\left(I-\mathscr{P}^{P}\right)(y) \in M^{*}(u)$.
(iii) $u \in \operatorname{Dom} M^{*}$ and $y \in M^{*}(u)+\operatorname{Null} M^{c}$.
(iv) $u \in \operatorname{Dom} M^{*}$ and $M^{*}(u) \subset y \dot{+}\left(\text { Range } M^{*}\right)^{\perp}$.

Proof. Assume (i). Then $d(y$, Range $M)=\|y-z\|$ for some $z \in M(u)$ and hence $y-z=\mathscr{P}^{+}(y)$. Thus, $\left(I-\mathscr{P}^{+}\right)(y) \in M(u)$ and so (i) implies (ii). Assume (ii) holds. Since $d(y$, Range $M)=\left\|y-\left(I-\mathscr{P}^{+}\right)(y)\right\|$ and $\left(I-\mathscr{P}^{+}\right)(y) \in M(u)$, it follows that u is a LSS. Thus (ii) implies (i). It is clear that (ii) implies (iii). Also, since (Range $M)^{\perp}=$ Null M^{*}, (iii) implies (iv). Finally to show that (iv) implies (i), let $k=z-y$ for some $z \in M(u)$, $k \in(\text { Range } M)^{\perp}$. Then $\quad d(y$, Range $M)=\left\|\mathscr{P}^{+}(y)\right\|=\left\|\cdot \mathscr{P}^{+}(z-k)\right\|=$ $\left\|\mathscr{P}^{+}(k)\right\|=\|y-z\|$. This shows that u is a LSS and completes the proof of [I]. Again, part [II] is the dual of part [I].

Remark. Suppose that M is an operator. If $\operatorname{Dom} M^{*}=H_{2}$, or equivalently, M^{c} is an operator and Dom M^{*} is closed, then (I-iii) of Proposition 3.2 can be rewritten as follows: u is a LSS of $M x=y$ if and only if $M^{*} M u=M^{*} y$, which is the usual "normal equation" characterization for a least-squares solution for, say, a bounded linear operator equation in Hilbert space. Of course, this characterization is false if Dom $M^{*} \neq \mathrm{H}_{2}$.

We now characterize the set of all least-squares solutions in terms of algebraic operator parts and generalized inverses of multi-valued linear operators.

Theorem 3.3. Assume that $y \in \operatorname{Range} M+\operatorname{Null} M^{*}$ and let \mathscr{P}^{+}be the orthogonal projector from H_{2} onto Null M^{*}. Then we have the following:
(1) (i) For any algebraic operator part R of M^{-1}, the coset

$$
R\left(I-\mathscr{P}^{+}\right)(y)+\operatorname{Null} M
$$

is the set of all least-squares solutions of $y \in M(x)$.
(ii) If Null M is closed, then $M^{*}(y)+\operatorname{Null} M$ is the set of all leastsquares solutions of $y \in M(x)$.
(iii) If Null M is closed and $y \in \operatorname{Range} M$, then $M^{*}(y)+\operatorname{Null} M$ is the set of all solutions of $y \in M(x)$.
(2) Assume that Null M is closed. Then
(i) $\left\|M^{*}(y)\right\| \leqslant\|u\|$ for all least-squares solutions u of $y \in M(x)$; equality holds only if $u=M^{*}(y)$.
(ii) Assume further that $M(0)$ is closed. Then

$$
d(y, \text { Range } M)=\left\|y-S_{M} M^{*}(y)-\mathscr{2}\left(I-\mathscr{P}^{+}\right)(y)\right\|,
$$

where $\mathscr{2}$ is the orthogonal projector from H_{2} onto $M(0)$. Moreover, the map

$$
y \mapsto S_{M} M^{*}(y)+\mathscr{2}\left(I-\mathscr{P}^{+}\right)(y)
$$

on Dom M^{*} into H_{2} is continuous.
Proof. (i) of (1). It follows from Proposition 3.2 that u is a leastsquares solution of $y \in M(x)$ if and only if $\left\{u,\left(I-\mathscr{P}^{+}\right)(y)\right\} \in M$, or equivalently, $\left(I-\mathscr{P}^{+}\right)(y) \in$ Range M and $u=R\left(I-\mathscr{P}^{+}\right)(y)+k$ for some $k \in \operatorname{Null} M$. Since $y \in \operatorname{Range} M+\operatorname{Null} M^{*}, \quad\left(I-\mathscr{P}^{+}\right)(y) \in \operatorname{Range} M=$ Dom R. Thus

$$
R\left(I-\mathscr{P}^{+}\right)(y) \dot{+} \text { Null } M
$$

is the set of all least-squares solutions of $y \in M(x)$.
(ii) of (1). Since Null M is closed, $S_{M^{-1}}$ is an algebraic operator part of M^{-1}. Thus by taking R as S_{M-1} in (i), we see that

$$
S_{M_{-1}}\left(I-\mathscr{P}^{+}\right)(y) \dot{+} \operatorname{Null} M=M^{*}(y) \dot{+} \operatorname{Null} M
$$

is the set of all least-squares solutions.
(iii) of (1). Since $S_{M^{-1}}$ is an algebraic operator part of M^{-1}, $S_{M-1}(y)+$ Null M is the set of all solutions of $y \in M(x)$. Since $y \in \operatorname{Range} M$, $y=\left(I-\mathscr{P}^{+}\right)(y)$. Thus

$$
S_{M-1}(y)=S_{M-1}\left(I-\mathscr{F}^{+}\right)(y)=M^{*}(y),
$$

and so $M^{*}(y)+$ Null M is the set of all solutions of $y \in M(x)$.
(i) of (2). Let u be a least-squares solution of $y \in M(x)$. Then $u=M^{*}(y)+k$ for some $k \in \operatorname{Null} M$. Since $M^{*}(y) \in(\text { Null } M)^{\perp}$, it follows that

$$
\|u\|^{2}=\left\|M^{*}(y)\right\|^{2}+\|k\|^{2} \geqslant\left\|M^{*}(y)\right\|^{2} .
$$

Suppose u is a least-squares solution of $y \in M(x)$ such that $\|u\| \leqslant\left\|M^{*}(y)\right\|$. We can write u as $M^{*}(y)+k$ for some $k \in$ Null M. It follows that $\left\|M^{*}(y)\right\|^{2}+\|k\|^{2} \leqslant\left\|M^{*}(y)\right\|^{2}$, and so $k=0$. Thus $u=M^{*}(y)$. This proves (i) of (2).
(ii) of (2). Since $M^{*}(y)$ is a least-squares solution of $y \in M(x)$,

$$
d(y, \text { Range } M)=\|y-s\|
$$

for some $s \in M\left(M^{\#}(y)\right)$. Since $M(0)$ is closed, S_{M} is an algebraic operator part of M. Therefore, since $\left\{M^{*}(y), s\right\} \in M$, it follows that

$$
S_{M} M^{*}(s)=(I-\mathscr{Z})(s),
$$

and hence

$$
s=S_{M} M^{\#}(s)+2(s)
$$

On the other hand, by the best approximation property of an orthogonal projection in Hilbert space, $s=\left(I-\mathscr{P}^{+}\right)(y)$. Hence,

$$
s=S_{M} M^{\#}(y)+\left(I-\mathscr{P}^{+}\right)(y) .
$$

Now, the map defined on $\operatorname{Dom} M^{*}$ in the theorem is continuous as it coincides with the map $x \mapsto\left(I-\mathscr{P}^{+}\right)(x)$ on Dom M^{*}.

Another generalization of the notion of a least-squares solution to the case of a multi-valued operator that seems natural is the following: Let g be a given element in H_{2}. An element $u \in H_{1}$ is called an almost least-squares solution of $g \in M(x)$ if $d(g$, Range $M)=d(g, M(u))$. Clearly both the concept of an almost LSS and LSS in the earlier sense reduce to the concept of LSS in the case of a (single-valued) operator.

Suppose that S is a (nonclosed) dense vector space in H_{2}. Define $M:=$ $\{0\} \oplus S$ and take any g in H_{2} such that $g \notin S$. Then Range $M+\operatorname{Null} M^{*}=$ $S \dot{+} S^{\perp}=S$. Thus by part [1] of Proposition 3.1 (or directly from the definition) $g \in M(x)$ has no least-squares solution. However,

$$
d(g, \text { Range } M)=d(g, S)=d(g, M(0))
$$

so that the zero vector is an almost least-squares solution of $g \in M(x)$. This example shows that the concepts of a least-squares solution and an "almost" least-squares solution are different, even though they agree in the case of a single-valued operator. In the following we will compare these two concepts more closely.

Theorem 3.4. Let $g \in H_{2}, u \in \operatorname{Dom} M$ be given. Let R be an arbitrary, but fixed algebraic operator part of M. Then
(1) $d(g, M(u))=\|g-s\|$ for some $s \in M(u)$ if and only if $g-R(u) \in$ $M(0)+(M(0))^{\perp}$. Moreover, if $M(0)$ is closed, then it is always true that

$$
d(g, M(u))=\|g-s\| \quad \text { for some } \quad s \in M(u) .
$$

(2) Assume that $g-R(u) \in M(0)+(M(0))^{\perp}$. Then

$$
\begin{gathered}
2(g)+(I-\mathscr{Q}) R(u) \in M(u), \\
d(g, M(u))=\|g-2(g)-(I-\mathscr{2}) R(u)\|,
\end{gathered}
$$

where 2 is the orthogonal projector from H_{2} onto $(M(0))^{c}$.
(3) Assume that $M(0)$ is closed. Then

$$
\begin{gathered}
\mathscr{Q}(g)+S_{M}(u) \in M(u), \\
d(g, M(u))=\left\|g-\mathscr{2}(g)-S_{M}(u)\right\|,
\end{gathered}
$$

where \mathscr{Q} is the same as the above.
Proof. (1) Let R be an arbitrary, but fixed algebraic operator part of M. Then for $u \in \operatorname{Dom} M$,

$$
M(u)=R(u) \dot{+} M(0) .
$$

It follows that

$$
d(g, M(u))=\|g-s\| \quad \text { for some } \quad s \in M(u)
$$

if and only if

$$
\begin{equation*}
d(g-R(u), M(0))=\|g-R(u)-k\| \tag{*}
\end{equation*}
$$

for some $k \in M(0)$. Define $M_{\infty}:=\{0\} \oplus M(0)$. Then $M(0)=$ Range M_{∞}. By Proposition 3.1, (*) holds for some $k \in M(0)$ if and only if $g-R(u)$ belongs to

$$
\text { Range } M_{\infty} \dot{+} \operatorname{Null}\left(M_{\infty}\right)^{*}=M(0) \dot{+}(M(0))^{\perp}
$$

This proves the first part of (1). To establish the last part, we choose R to be

$$
R:=\{\{g,(I-\mathscr{P})(h)\} \mid\{g, h\} \in M\},
$$

where 9 is the orthogonal projector from H_{2} onto $M(0)$ which is closed by assumption. Then $R(u) \in(M(0))^{\perp}$. It follows that $g-R(u) \in M(0) \dot{+}(M(0))^{-}$ if and only if $g \in M(0)+(M(0))^{\perp}$.
(2) Let \mathscr{Q} be as in the theorem. Then

$$
\begin{aligned}
d(g, M(u)) & =d(g-R(u), M(0))=\|(I-2)(g-R(u))\| \\
& =\|g-\mid 2(g)+(I-2) R(u)\| . \\
& =\|g-R(u)-k\|
\end{aligned}
$$

for some $k \in M(0)$. Since such a k is unique, it follows that $\mathscr{Z}(g)-\mathcal{Z} R(u)=$ $k \in M(0)$. Thus

$$
\mathscr{Z}(g)+(I-\mathscr{Z}) R(u) \in R(u) \dot{+} M(0)=M(u)
$$

(3) Since $M(0)$ is closed, S_{M} is an algebraic operator part of M. Thus the result follows from (2) by replacing R by S_{M} and noting that $(I-2) S_{M}=S_{M}$.

Corollary 3.5. Let $M \subset H_{1} \oplus H_{2}$ be a vector space and $g \in H_{2}$.
(1) If u is a least-squares solution of $g \in M(x)$, then u is an "almost" least-squares solution of $g \in M(x)$.
(2) Assume that $M(0)$ is closed. Then u is a least-squares solution of $g \in M(x)$ if and only if it is an "almost" least-squares solution of $g \in M(x)$.

Proof. (1) Suppose that $u \in \operatorname{Dom} M$ and

$$
d(g, \text { Range } M)=\|g-z\|
$$

for some $z \in M(u)$. Since $M(u) \subset$ Range $M, d(g$, Range $M) \leqslant d(g, M(u))$. Thus

$$
\|g-z\|=d(g, \text { Range } M) \leqslant d(g, M(u)) \leqslant\|g-z\|,
$$

and hence u is an "almost" least-squares solution of $g \in M(x)$.
(2) Assume that

$$
d(g, \text { Range } M)=d(g, M(u))
$$

Since $M(0)$ is closed, by Theorem 3.4, $d(g, M(u))=\|g-z\|$ for some $z \in M(u)$. It follows that

$$
d(g, \text { Range } M)=\|g-z\|, \quad z \in M(u)
$$

Thus u is a least-squares solution of $g \in M(x)$. This together with the result of (1) completes the proof of (2).

Some of the preceding results develop vector extremal properties (i.e., in terms of $M^{*} y$) of the orthogonal generalized inverse of $M \subset H_{1} \oplus H_{2}$ under
some mild assumptions. The authors have also obtained operator extremal properties of M^{*}, extending some of the results of [2] to multi-valued operators. These results will appear elsewhere. The authors have also investigated iterative and regularization methods for equations (or inclusions) involving nondensely defined and/or multi-valued linear operators in Hilbert spaces (see, e.g., [4]).

References

1. E. A. Coddington and A. Difksma, Adjoint subspaces in Banach spaces, with applications to ordinary differential subspaces, Ann. Mat. Pura Appl. 118 (1978), 1-118.
2. H. W. Engl and M. Z. Nashed, New extremal characterizations of generalized inverses of linear operators, J. Math. Anal. Appl. 82 (1981), 566-586.
3. S. J. Lee and M. Z. Nashed, Operator parts and generalized inverses of multi-valued operators, with applications to ordinary differential subspaces, submitted for publication. A summary of some of these results appeared in S. J. Lee and M. Z. Nashed, Generalized inverses for linear manifolds and applications to boundary value problems, C.R. Math. Rep. Acad. Sci. Canada 4 (1982), 347-352.
4. S. J. Lee and M. Z. Nashed, Gradient method for nondensely defined closed unbounded linear operators, Proc. Amer. Math. Soc. 88 (1983).
5. M. Z. Nashed (Ed.), "Generalized Inverses and Applications," Academic Press, New York, 1976.
