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Let M be a linear manifold in HI (f) H" where HI and H, are Hilbert spaces.
Two notions of least-squares solutions for the multi-valued linear operator equation
(inclusion) y E M(x) are introduced and investigated. The main results include (i)
equivalent conditions for least-squares solvability, (ii) properties of a least-squares
solution, (iii) characterizations of the set of all least-squares solutions in terms of
algebraic operator parts and generalized inverses of linear manifolds, and (iv) best
approximation properties of generalized inverses and operator parts of multi-valued
linear operators. The principal tools in this investigation are an abstract adjoint
theory, orthogonal operator parts, and orthogonal generalized inverses of linear
manifolds in Hilbert spaces.

1. INTRODUCTION

Let M be a linear manifold in HI G;l H 2 , where HI and H 2 are Hilbert
spaces. We view M as a multi-valued linear operator (or as a linear relation)
by taking M(x) := {y I {x, y} EM}. The domain, range, and null space of M
are defined, respectively, by

Dom M:= {x E HII {x,y} E Mfor somey E H 2 },

RangeM:= {y E H 2 1 {x,y} E Mfor some x E Hd,

NullM:= {xE HI I {x, O} EM}.
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In this paper, we introduce and investigate two notions of least-squares
solutions (LSS) for the multi-valued linear operator equation (or inclusion)

y E M(x),

where y E Hz is given. If M(O) = {Of, then M is (the graph of) a single
valued linear operator from HI to Hz. We are primarily interested in the
situation when this is not the case. We shall refer to a "single-valued linear
operator" simply as an "operator."

The main results which are developed in Section 3 include (i) equivalent
conditions for least-squares solvability, (ii) characterizations of the set of all
least-squares solutions in terms of algebraic operator parts and generalized
inverses of multi-valued linear operators, (iii) properties of a least-squares
solution, and (iv) best approximation properties of generalized inverses and
operator parts for multi-valued mappings. The crucial tools in this
development are an abstract adjoint theory (or adjoint subspaces),
orthogonal operator parts and orthogonal generalized inverses of linear
manifolds in Hilbert spaces. The essential aspects of these tools that are
needed in the proofs are delineated in Section 2.

Throughout this paper, H" Hz, and H 3 denote Hilbert spaces. The inner
product in any of these spaces is denoted by < , >and the induced norm by
11·11. The following are standard notations (see r I J), but for convenience we
define them. For any sets A, Be HI E8 Hz and Y c H 3 E8 HI'

AY:= {{x,y} EH3 E8Hz l {x,z} E Y, {z,y} EA},

aA := {{x, ay} I {x, y} E A }, a E C,

A-+- B := {a + b Ia E A, b E B},

A +B:= j{x,y+z} Ijx,y} EA, jx,z} EB}.

The adjoint (subspace) of A cHI E8 Hz is defined by

A* := {{y, -x} E Hz E8 HII {x,y} EA1-},

where A 1- denotes the orthogonal complement of A. Useful properties of
adjoints of linear manifolds are:

(AA)* = 14 *

where A C denotes the closure of A,

for AE C,

(AB)*::::> B*A *, (A +B)* ::::>A* +B*.



382 LEE AND NASHED

2. OPERATOR PARTS OF SUBSPACES

Let M be a vector space in HI EB H 2' the (external) direct sum of two
Hilbert spaces HI' H 2 • A vector space R cHI EB H 2 is called an algebraic
operator part of M if R is the graph of a linear operator such that M is the
(internal) algebraic direct sum of Rand {O} EB M(O). If an algebraic operator
part is also (topologically) closed in HI EB H 2 , then it is called an operator
part. These concepts were introduced by E. A. Coddington, and have been
extensively studied in [1,3]. (Recall that a vector space V is said to be the
internal direct sum of subspaces S I and S 2 of V if every element v E V can
be uniquely written as v = VI + V 2 ' wh~re VI E SI and v2 E S2' In contrast, if
VI and V2 are given vector spaces, then the vector space V of all ordered
pairs (VI' v2), where Vi E Vi' with the standard algebraic operations, is called
the external direct sum of VI and V2 • It is well known that if V is the
internal direct sum of S I and S 2' then V is isomorphic to the external direct
sum of S I and S2' From now on we shall drop the adjectives "external" and
"internal" for direct sums.)

We next introduce a notation SM' Suppose that M(O) is closed in H 2 and
let ,iF denote the orthogonal projector from H 2 onto M(O). Then we define

SM:= Igraph(1 - .?)]M

= {{g, (1 - .9")(y)} I {g,Yf EM}.

It is easy to check that SM is an algebraic operator part of M such that Stf is
orthogonal to {Of EB M(O), and Dom SM = Dom M, Range St/ =
(Range M) n (M(O))~. Moreover, SM is closed if and only if M is closed. We
emphasize here that throughout this paper, the notation S.tf is reserved for
the above algebraic operator part of M only when M(O) is closed. It is clear
from the definition that S.AM = AStt for any AE C

PROPOSITION 2.1. (1) Let A, B be vector spaces in HI EB H 2 , such that
A(O), B(O) are closed. Then: (i) (A -+- B)(O) = A(O) -+- B(O) -+- Range(S4 - S8)'
(ii) If (A -+- B)(O) is closed, then

SA +B = {{g, (I - .9')(SA(a) + SB(g - am Ig E DomA -+- Dom B

and a E DomA such that g - a EDam B},

where .9" is the orthogonal projector from H 2 onto (A -+- B)(O). (iii) If
A(O) -+- B(O) is closed, then

SHB = (graph(I - ..t))(S, + S8)'

where j is the orthogonal projector from H 2 onto (A + B)(O) = A (0) -+- B(O).
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(2) Suppose that A c Hz 8j H 3 and Be HI 8j Hz are vector spaces
such that A(O), B(O) are closed. Then: (i) (AB)(O) = A(O) -+- SA(B(O) n
Dam A), orthogonal sum. (ii) If (AB)(O) is closed, then

SA8 = {{ g, (I - 2) SA(SB(g) + k} Ik E B(O) and g E Dom B

such that SB(g) + k E Dam A}, where 2 is the

orthogonal projector from H 3 onto (AB)(O).

Proof Take x E (A -+- B)(O). Then x = a z + bz for some a, such that
{a, , az} E A, {-a l' bz} E B. Since SA and S B are algebraic operator parts of
A and B, respectively, it follows that az = 8 4(a,) + k" bz = -S8(a l ) + kz for
some k l E A (0), k z E B(O). Thus

x = S Aa j ) - SB(a l ) + k j + k z E A(O) -+- B(O) -+- Range(S A- S8)'

Hence
(A -+- B)(O) cA(O) -+- B(O) -+- Range(SA - S/I)'

It is easy to check that

(A -+- B)(O):::JA(O) -+- B(O) -+ Range(SA - S8)'

This proves (I-i). To prove (ii) of (1), let /J' be as in the theorem. Then

SA f./I = {{g, (I -.?)(h)} I {g,h} EA -+- B}.

Now {g, h} E A -+- B if and only if

gE DomA -+- DomB,

for some k] E A(O), kz E B(O), a j E Dom A, b j E Dom B such that
a j + b] = g. Since A(O) -+- B(O) c (A -+- B)(O), (I - .?)(k, + kz) = O. Thus (*)
combined with the above argument proves (ii) of (1). We now prove (iii) of
(I). Let .if be as in the theorem. Then

8 H /I= {{g,(I-j)(h)}1 {g,h}EA +B}. (**)

Take {g,h}EA +B. Then gEDomAilDomB and h=p+q for some
p,q such that 19,p}EA, 19,q}EB. Let

p = 8 4 (g) + k" q = S/I(g) + k z

for some k l E A(O), k z E B(O). Then

(I - 3)(h) = (I - 3)(SA + S/I)(g)

as k I + k z E (A + B)(O). This together with (**) yields (iii) of (I). Part (2)
can be proved in a similar way. I
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DEFINITION. Let Me HI ffi Hz be a vector space such that Null M is
closed. Let ,9 be the orthogonal projector from HI onto Null M, and ,9'+ the
orthogonal projector from Hz onto Null M*. Let M- I be the inverse relation
of M. Define a vector space W by

W:= [graph(1 - ,9')) M- I [graph(1 - ,9+ )].

Then W is called the orthogonal generalized inverse of M. (If M is the
graph of a closed densely defined linear operator, then M# is precisely the
graph of the Moore-Penrose inverse of that operator.)

The study of generalized inverses of multi-valued linear operators in
Banach space was initiated by the authors in [3], where a comprehensive
theory is developed with applications to differential subspaces and general
boundary-value problems. In this paper, we will only need elementary
properties of the orthogonal generalized inverse. It is proved in [31 that M#
is a linear operator such that

direct sum,

Dom W = Range M -+- Null M*,

Range W = Range 8 M - I = (Dom M) (J (Null M)l-.

Moreover, if M is closed, then W is closed and (M#)* is the orthogonal
generalized inverse of M*. Furthermore, when M is closed, M# is continuous
if and only if Range M is closed.

PROPOSITION 2.2. Let Me HI ffi Hz be a vector space such that Null M
is closed. Let ,9 and,9+ be the orthogonal projectors from HI and Hz onto
Null M and Null M*, respectively. Then

MW = {{x, (I - ,9+)(x) + s} I s E M(O), x E Dom M#},

WM = {{x, (I - ,9')(x)} Ix E Dom M}.

Proof This can be found in [3]. I
The preceding properties of generalized inverses of multi-valued linear

operators should be contrasted with those in the case of an operator; see [5].
In particular, it should be noted from Proposition 2.2 that in the case when
M(O) =I=- {Of, MW is not a single-valued orthogonal projector.
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3. LEAST-SQUARES SOLUTIONS OF MULTI-VALUED
LINEAR OPERATOR EQUATIONS

DEFINITION. Let Me HI EB Hz be an arbitrary given vector space. Let
y E Hz. Then u E HI is called a least-squares solution (LSS) of the inclusion
y E M(x) if u E Dom M and

d(y, Range M) = II y - z II

for some z E M(u), where d(y, Range M) is the distance between y and
RangeM.

Note that if such a z exists, then it is unique. Of course, u need not be
unique. Also, if M is an operator, then the above definition coincides with
the usual definition of a least-squares solution of an operator equation.

PROPOSITION 3.1. [I) Let y E Hz. Then the following statements are
equivalent:

(i) y E M(x) has a LSS.

(ii) (I - ,9'+ )(y) E Range M, where ,9'+ is the orthogonal
projector from Hz onto Null M*.

(iii) y E Null M* -+ Range M.

[II] Let y E HI' Then the following statements are equivalent:

(i) y E M*(x) has a LSS.

(ii) (I - Y")(y) E Range M*, where ,g;> is the orthogonal projector
from HI onto Null M C

•

(iii) y E Null M C -+ Range M*.

Proof [I] Assume (i). Let u be a LSS of y E M(x). Then u E Dom M
and d(y, Range M) = II y - z II, z E M(u). Now d(y, Range M) =
d(y, (Range My) = II y - (I - ,9' + )(y )11. It follows from the best approx
imation property of an orthogonal projection in Hilbert space that z :=
(I - ,9'+)y E M(u). Thus, (i) implies (ii). Now assume (ii). Then
(I - ,g;>+) Y = z for some z E Range M. Thus, y = ,g;>+ (y) + z E Null M* -+
Range M, and so (ii) implies (iii). To prove that (iii) implies (i), let
y = k + z, z E M(u) for some u E Dom M, k E Null M*. Then
d(y,RangeM)=II,9'+(y)II=II,g;>+(k)II=llkll=lly-zll. Thus u is a LSS.
This completes the proof of [I]. Part [II] is the dual of [I]; it follows from it
by replacing M by M* and by noting that M* * = M C

• I

Remark. Note that Null M* -+ Range M is always dense in H 2' It is
closed if and only if Range M is closed.

640/38/4,7
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PROPOSITION 3.2. Let.? and .9+ be as in Proposition 3.1.

[I] Let y E H 2 be given. Then the following statements are
equivalent:

(i) u E HI is a LSS ofyEM(x).

(ii) u E Dom M and (I - .9+ )(y) E M(u).

(iii) u E Dom M and y E M(u) -i- Null M*.

(iv) u E Dom M and M(u) c y -i- (Range M)l-.

[II] Let y E HI be given. Then the following statements are
equivalent:

(i) u E H 2 and u is a LSS of y E M*(x).

(ii) u E Dom M* and (I - ,?)(y) E M*(u).

(iii) u E Dom M* and y E M*(u) -i- Null M C
•

(iv) u E Dom M* and M*(u) cy -i- (Range M*)l-,

Proof Assume (i). Then dey, Range M) = II y - z II for some z E M(u)
and hencey-z=,9'+(y). Thus, (I-,9'+)(y)EM(u) and so (i) implies (ii).
Assume (ii) holds. Since d(y,RangeM)=lly-(I-,9+)(y)11 and
(I-g+)(y)EM(u), it follows that u is a LSS. Thus (ii) implies (i). It is
clear that (ii) implies (iii). Also, since (Range M)l- = Null M*, (iii) implies
(iv). Finally to show that (iv) implies (i), let k = z - y for some z E M(u),
k E (Range M)l-. Then dey, RangeM) = 11.9+ (y)11 = 11.9+(z - k)11 =
1I.?+(k)II=lly-zll. This shows that u is a LSS and completes the proof of
[I]. Again, part [II] is the dual of part [I]. I

Remark. Suppose that M is an operator. If Dom M* = H 2' or
equivalently, M C is an operator and Dom M* is closed, then (I-iii) of
Proposition 3.2 can be rewritten as follows: u is a LSS of Mx = y if and only
if M*Mu = M*y, which is the usual "normal equation" characterization for
a least-squares solution for, say, a bounded linear operator equation in
Hilbert space. Of course, this characterization is false if Dom M* '* H 2 •

We now characterize the set of all least-squares solutions in terms of
algebraic operator parts and generalized inverses of multi-valued linear
operators.

THEOREM 3.3. Assume that y E Range M -i- Null M* and let g+ be the
orthogonal projector from H 2 onto Null M*. Then we have the following:

(1) (i) For any algebraic operator part R of M- \ the coset

R(I - .?+ )(y) -i- Null M

is the set of all least-squares solutions of y E M(x).
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(ii) If Null M is closed, then Ar(y) -+- Null M is the set of all least
squares solutions of y E M(x).

(iii) If Null M is closed and y E Range M, then M#(y) -+- Null M is
the set of all solutions of y E M(x).

(2) Assume that Null M is closed. Then

(i) 11~(y)11 <Ilull for all least-squares solutions u of y E M(x);
equality holds only if u = Ar(y).

(ii) Assume further that M(O) is closed. Then

d(y, Range M) = II y - SMAr(y) - 2(1 - ,']4+ )(y)ll,

where 2 is the orthogonal projector from H 2 onto M(O). Moreover, the map

on Dom Ar into H 2 is continuous.

Proof (i) of (1). It follows from Proposition 3.2 that u is a least
squares solution of yEM(x) if and only if {u,(I-,']4+)(y)} EM, or
equivalently, (I - ,']4+ )(y) E Range M and u = R(I - ,']4+ )(y) + k for some
k E Null M. Since y E Range M -+- Null M*, (I - ,']4 + )(y) E Range M =
Dom R. Thus

is the set of all least-squares solutions of y E M(x).

(ii) of(1). Since NuliM is closed, SM-I is an algebraic operator part
of M- 1

• Thus by taking R as SM-I in (i), we see that

is the set of all least-squares solutions.

(iii) of (I). Since SM -I is an algebraic operator part of M - I,

SM-I(y)-+- Null M is the set of all solutions of y E M(x). Since y E Range M,
y = (I - ,']4+ )(y). Thus

SM-I(y) = SM-,(I - ,']4+ )(y) =~(y),

and so ~(y) -+- Null M is the set of all solutions of y E M(x).

(i) of (2). Let u be a least-squares solution of y E M(x). Then
u = ~(y) + k for some k E Null M. Since M#(y) E (Null M)L, it follows
that
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Suppose u is a least-squares solution of y E M(x) such that II u II ~ II M#(y)ll.
We can write u as ~(y) + k for some k E Null M. It follows that
11~(y)"Z + II kW ~ "~(y)IIZ, and so k = o. Thus u = M#(y). This proves
(i) of (2).

(ii) of (2). Since ~(y) is a least-squares solution of y E M(x),

dey, Range M) = II y - sll

for some s E M(~(y». Since M(O) is closed, SM is an algebraic operator
part of M. Therefore, since ~~(y), s} EM, it follows that

SM~(S) = (1 - 2)(s),

and hence

On the other hand, by the best approximation property of an orthogonal
projection in Hilbert space, s = (1 - .9 + )(y). Hence,

s = S>,f~(y) + (1 - .'/+ )(y).

Now, the map defined on Dom~ in the theorem is continuous as it
coincides with the map x H (1 - .9+ )(x) on Dom M#. I

Another generalization of the notion of a least-squares solution to the case
of a multi-valued operator that seems natural is the following: Let g be a
given element in Hz. An element u E HI is called an almost least-squares
solution of g E M(x) if d(g, Range M) = d(g, M(u». Clearly both the
concept of an almost LSS and LSS in the earlier sense reduce to the concept
of LSS in the case of a (single-valued) operator.

Suppose that S is a (nonclosed) dense vector space in Hz. Define M :=
{Of EB S and take any g in Hz such that g E S. Then Range M -+- Null M* =
S -+- S1- = S. Thus by part [II of Proposition 3.1 (or directly from the
definition) g E M(x) has no least-squares solution. However,

d(g, Range M) = d(g, S) = d(g, M(O»,

so that the zero vector is an almost least-squares solution of g E M(x). This
example shows that the concepts of a least-squares solution and an "almost"
least-squares solution are different, even though they agree in the case of a
single-valued operator. In the following we will compare these two concepts
more closely.

THEOREM 3.4. Let g E Hz, u E Dom M be given. Let R be an arbitrary,
but fixed algebraic operator part of M. Then
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(1) d(g, M(u)) = II g - sll for some s E M(u) if and only if g - R(u) E
M(O) -+ (M(O))-L. Moreover, if M(O) is closed, then it is always true that

d(g, M(u)) = II g - sll for some s E M(u).

(2) Assume that g - R(u) E M(O) + (M(O))-L. Then

2(g) + (I - 2) R(u) E M(u),

d(g, M(u)) = II g - 2(g) - (I - 2) R(u)ll,

where 2 is the orthogonal projector from Hz onto (M(O))".

(3) Assume that M(O) is closed. Then

2(g) + SM(U) E M(u),

d(g, M(u)) = II g - 2(g) - SM(U )11,

where 2 is the same as the above.

Proof (1) Let R be an arbitrary, but fixed algebraic operator part of
M. Then for u E Dom M,

M(u) = R(u) -+ M(O).

It follows that

if and only if

d(g, M(u)) = II g - sll for some s E M(u)

d(g - R(u), M(O)) = II g - R(u) - kll

for some k E M(O). Define Moo := {O} (f) M(O). Then M(O) = Range Moo' By
Proposition 3.1, (*) holds for some k E M(O) if and only if g - R(u) belongs
to

This proves the first part of (1). To establish the last part, we choose R to be

R := {{g, (I - .9')(h)} I {g, h} EM},

where .9' is the orthogonal projector from Hz onto M(O) which is closed by
assumption. Then R(u) E (M(O))-L. It follows that g - R(u) E M(O) -+ (M(O))~

if and only if g E M(O) -+- (M(O))-L.
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(2) Let.2 be as in the theorem. Then

d(g, M(u» = d(g - R(u), M(O» = 11(/ - .3)(g - R(u»11

= II g - [3(g) + (I -.3) R(u) III.

=Ilg-R(u)-kll

for some k E M(O). Since such a k is unique, it follows that .3(g) - .3R(u) =
k E M(O). Thus

.3(g) + (I - 2) R(u) E R(u) -+- M(O) = M(u).

(3) Since M(O) is closed, 8M is an algebraic operator part of M. Thus
the result follows from (2) by replacing R by 8 M and noting that
(I - 3) 8M = 8M' I

COROLLARY 3.5. Let Me HI EB H 2 be a vector space and g E H 2 •

(1) If u is a least-squares solution of g E M(x), then u is an "almost"
least-squares solution of g E M(x).

(2) Assume that M(O) is closed. Then u is a least-squares solution of
g E M(x) if and only if it is an "almost" least-squares solution of g E M(x).

Proof (1) Suppose that u E Dom M and

d(g, Range M) = II g - zll

for some z E M(u). Since M(u) c Range M, d(g, Range M):::;; d(g, M(u).
Thus

II g - zll = d(g, Range M):::;; d(g, M(u»:::;; II g - zll,

and hence u is an "almost" least-squares solution of g E M(x).

(2) Assume that

d(g, Range M) = d(g, M(u»).

Since M(O) is closed, by Theorem 3.4, d(g, M(u» = II g - zll for some
z E M(u). It follows that

d(g, Range M) = II g - z II, z E M(u).

Thus u is a least-squares solution of g E M(x). This together with the result
of (1) completes the proof of (2). I

Some of the preceding results develop vector extremal properties (i.e., in
terms of M"'y) of the orthogonal generalized inverse of Me HI EB H 2 under
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some mild assumptions. The authors have also obtained operator extremal
properties of Af#, extending some of the results of [2] to multi-valued
operators. These results will appear elsewhere. The authors have also
investigated iterative and regularization methods for equations (or
inclusions) involving nondensely defined and/or multi-valued linear
operators in Hilbert spaces (see, e.g., [4 D.
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